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Abstract

How to understand and reason about uncertainty in climate science is a topic that is receiving 

increasing attention in both the scientific and philosophical literature. This paper provides a 

perspective on exploring ways to understand, assess and reason about uncertainty in climate science, 

including application to the Intergovernmental Panel on Climate Change (IPCC) assessment reports. 

Uncertainty associated with climate science and the science-policy interface presents unique 

challenges owing to complexity of the climate system itself, the potential for adverse socioeconomic 

impacts of climate change, and politicization of proposed policies to reduce societal vulnerability to 

climate change. The challenges to handling uncertainty at the science-policy interface are framed using 

the ‘monster’ metaphor, whereby attempts to tame the monster are described. An uncertainty lexicon is 

provided that describes the natures and levels of uncertainty and ways of representing and reasoning 

about uncertainty. Uncertainty of climate models is interpreted in the context of model inadequacy, 

uncertainty in model parameter values, and initial condition uncertainty. We examine the challenges of 

building confidence in climate models and in particular, the issue of confidence in simulations of the 

21st century climate. The treatment of uncertainty in the IPCC assessment reports is examined, 

including the IPCC 4th Assessment Report conclusion regarding the attribution of climate change in 

the latter half of the 20th century.  Ideas for monster taming strategies are discussed for institutions, 

individual scientists, and communities.
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1.  Introduction

“Doubt is not a pleasant condition, but certainty is absurd.1”  Voltaire

Over the course of history, what seems unknowable and unimaginable to one generation 

becomes merely a technical challenge for a subsequent generation.  The “endless frontier” of science 

(Bush, 1945) advances as scientists extend what is possible both in theory and practice. Doubt and 

uncertainty about our current understanding is inherent at the knowledge frontier. While extending the 

knowledge frontier often reduces uncertainty, it leads inevitably to greater uncertainty as unanticipated 

complexities are discovered. A scientist’s perspective of the knowledge frontier is described by 

Feynman (1988):  “When a scientist doesn’t know the answer to a problem, he is ignorant. When he 

has a hunch as to what the result is, he is uncertain. And when he is pretty damn sure of what the result 

is going to be, he is still in some doubt. We have found it of paramount importance that in order to 

progress, we must recognize our ignorance and leave room for doubt. Scientific knowledge is a body 

of statements of varying degrees of certainty — some most unsure, some nearly sure, but none 

absolutely certain.”  

How to understand and reason about uncertainty in climate science is a topic that is receiving 

increasing attention in both the scientific and philosophical literature. Such enquiry is paramount 

because of the challenges to climate science associated with the science-policy interface and its 

socioeconomic importance, as reflected by the Intergovernmental Panel for Climate Change (IPCC) 

assessment reports.2

The ‘uncertainty monster’ is a concept introduced by van der Sluijs (2005) in an analysis of the 

different ways that the scientific community responds to uncertainties that are difficult to tame. The 

‘monster’ is the confusion and ambiguity associated with knowledge versus ignorance, objectivity 

versus subjectivity, facts versus values, prediction versus speculation, and science versus policy. The 

uncertainty monster gives rise to discomfort and fear, particularly with regard to our reactions to things 

or situations we cannot understand or control, including the presentiment of radical unknown dangers. 

  
1 Source: http://www.quotationspage.com/quote/33103.html
2 All IPCC Assessment Reports are online at 
http://www.ipcc.ch/publications_and_data/publications_and_data_reports.htm#1.  The four Assessment reports 
are referred to here as FAR, SAR, TAR, AR4, plus the forthcoming AR5.  Unless otherwise indicated, citations 
in the text refer to Working Group I Reports
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An adaptation of van der Sluijs’ strategies of coping with the uncertainty monster at the science-policy 

interface is described below. 

Monster hiding. Uncertainty hiding or the “never admit error” strategy can be motivated by a 

political agenda or because of fear that uncertain science will be judged as poor science by the outside 

world. Apart from the ethical issues of monster hiding, the monster may be too big to hide and 

uncertainty hiding enrages the monster.

Monster exorcism. The uncertainty monster exorcist focuses on reducing the uncertainty 

through advocating for more research. In the 1990’s, a growing sense of the infeasibility of reducing 

uncertainties in global climate modeling emerged in response to the continued emergence of 

unforeseen complexities and sources of uncertainties. Van der Sluijs states that: “monster-theory 

predicts that [reducing uncertainty] will prove to be vain in the long run: for each head of the 

uncertainty monster that science chops off, several new monster heads tend to pop up due to 

unforeseen complexities,” analogous to the Hydra beast of Greek mythology.

Monster simplification. Monster simplifiers attempt to transform the monster by subjectively 

quantifying and simplifying the assessment of uncertainty. Monster simplification is formalized in the 

IPCC AR3 and AR4 by guidelines for characterizing uncertainty in a consensus approach consisting of 

expert judgment in the context of a subjective Bayesian analysis (Moss and Schneider 2000).

Monster detection. The first type of uncertainty detective is the scientist who challenges 

existing theses and works to extend knowledge frontiers. A second type is the watchdog auditor, 

whose main concern is accountability, quality control and transparency of the science. A third type is 

the merchant of doubt (Oreskes and Collins 2010), who distorts and magnifies uncertainties as an 

excuse for inaction for financial or ideological reasons.

Monster assimilation. Monster assimilation is about learning to live with the monster and 

giving uncertainty an explicit place in the contemplation and management of environmental risks.

Assessment and communication of uncertainty and ignorance, along with extended peer communities, 
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are essential in monster assimilation. The challenge to monster assimilation is the ever-changing 

nature of the monster and the birth of new monsters.

This paper explores ways to understand, assess and reason about uncertainty in climate 

science, with specific application to the IPCC assessment process. Section 2 describes the challenges 

of understanding and characterizing uncertainty in dynamical models of complex systems, including 

challenges to interpreting ensemble of simulations for the 21st century climate used in the IPCC 

Assessment Reports.  Section 3 addresses some issues regarding reasoning about uncertainty and 

examines the treatment of uncertainty by the IPCC Assessment Reports.  Section 4 addresses 

uncertainty in the detection and attribution of anthropogenic climate change.  And finally, Section 5

introduces some ideas for monster taming strategies at the levels of institutions, individual scientists, 

and communities.
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SIDEBAR

Uncertainty lexicon

The nature of uncertainty is often expressed by the distinction between epistemic uncertainty 

and ontic uncertainty.  

Epistemic uncertainty is associated with imperfections of knowledge, which may be reduced by further 

research and empirical investigation. Examples include limitations of measurement devices and

insufficient data. Epistemic uncertainties in models include missing or inadequately treated processes 

and errors in the specification of boundary conditions.  

Ontic (often referred to as aleatory) uncertainty is associated with inherent variability or randomness. 

Natural internal variability of the climate system contributes to ontic uncertainty in the climate system.

Ontic uncertainties are by definition irreducible.

Walker et al. (2003) provides a complete logical structure of the level of uncertainty, 

characterized as a progression between deterministic understanding and total ignorance:  statistical 

uncertainty, scenario uncertainty, and recognized ignorance.  

Statistical uncertainty is the aspect of uncertainty that is described in statistical terms. An example of 

statistical uncertainty is measurement uncertainty, which can be due to sampling error or inaccuracy or 

imprecision in measurements.  

Scenario uncertainty implies that it is not possible to formulate the probability of occurrence of one 

particular outcome. A scenario is a plausible but unverifiable description of how the system and/or its 

driving forces may develop over time. Scenarios may be regarded as a range of discrete possibilities 

with no a priori allocation of likelihood. 

Recognized ignorance refers to fundamental uncertainty in the mechanisms being studied and a weak 

scientific basis for developing scenarios. Reducible ignorance may be resolved by conducting further 

research, whereas irreducible ignorance implies that research cannot improve knowledge.

An alternative taxonomy for levels of uncertainty is illustrated by this quote from U.S. 

Secretary of Defense Donald Rumsfeld:  “[A]s we know, there are known knowns; there are things we 
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know we know. We also know there are known unknowns; that is to say we know there are some 

things we do not know. But there are also unknown unknowns -- the ones we don't know we don't 

know. And if one looks throughout the history of our country and other free countries, it is the latter 

category that tend to be the difficult ones.”3

  
3 Source: http://www.defenselink.mil/transcripts/transcript.aspx?transcriptid=2636.
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2.  Uncertainty of climate models

“Synergy means behavior of whole systems unpredicted by the behavior of their parts.”4 R. 
Buckminster Fuller

Climate model complexity arises from the nonlinearity of the equations, high dimensionality 

(millions of degrees of freedom), and the linking of multiple subsystems. Computer simulations of the 

complex climate system can be used to represent aspects of climate that are extremely difficult to 

observe, experiment with theories in a new way by enabling hitherto infeasible calculations, 

understand a system of equations that would otherwise be impenetrable, and explore the system to 

identify unexpected outcomes (e.g. Muller 2010).

2.1 Imperfect models

“The future ain’t what it used to be.”5 Yogi Berra

Model imperfection is a general term that describes our limited ability to simulate climate and 

is categorized here in terms of model inadequacy and model uncertainty. Model inadequacy reflects 

our limited understanding of the climate system, inadequacies of numerical solutions employed in 

computer models, and the fact that no model can be structurally identical to the actual system (e.g 

Stainforth et al. 2007). Model structural form is the conceptual modeling of the physical system (e.g. 

dynamical equations, initial and boundary conditions), including the selection of subsystems to include 

(e.g stratospheric chemistry, ice sheet dynamics). In addition to insufficient understanding of the 

system, uncertainties in model structural form are introduced as a pragmatic compromise between 

numerical stability and fidelity to the underlying theories, credibility of results, and available 

computational resources. 

Model uncertainty is associated with uncertainty in model parameters and subgrid 

parameterizations, and also uncertainty in initial conditions. Uncertainties in parameter values include 

  
4 http://en.wikiquote.org/wiki/Buckminster_Fuller
5 http://www.quotationspage.com/quote/27223.html
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uncertain constants and other parameters that are largely contained in subgridscale parameterizations 

(e.g. boundary layer turbulence, cloud microphysics), and parameters involved in ad hoc modeling to 

compensate for the absence of neglected factors.  Initial condition uncertainty arises in simulations of 

nonlinear and chaotic dynamical systems (e.g Palmer 2005). If the initial conditions are not known 

exactly, the forecast trajectory will diverge from the actual trajectory, and it cannot be assumed that 

small perturbations have small effects. As such, model uncertainty includes epistemic uncertainty in 

parameter values and both epistemic and ontic uncertainty in initial conditions.

Ensemble methods are a brute force approach to representing model parameter and initial 

condition uncertainty (for an overview, see Parker 2010). Rather than conducting a single simulation, 

multiple simulations are run that sample some combination of different initial conditions, model 

parameters and parameterizations, and model structural forms. While the ensemble method used in 

weather and climate predictions is inspired by Monte Carlo approaches, application of a traditional 

Monte Carlo approach far outstrips computational capacity owing to the very large number of possible 

combinations required to fully represent climate model parameter and initial condition uncertainty. A 

high level of model complexity and high model resolution precludes large ensembles. Stochastic 

parameterization methods are being introduced (e.g. Palmer, 2001) to characterize parameter and 

parameterization uncertainty, reducing the need to conduct ensemble simulations to explore parameter

and parameterization uncertainty.

Model outcome uncertainty, also referred to as prediction error, arises from the propagation of 

the aforementioned uncertainties through the model simulation and is evidenced by the simulated 

outcomes. Model prediction error can be evaluated against known analytical solutions, comparisons 

with other simulations, and/or comparison with observations. Reducing prediction error is a 

fundamental objective of model calibration. Calibration is necessary to address parameters that are 

unknown or inapplicable at the model resolution, and also in the linking of submodels. As the 

complexity, dimensionality, and modularity of a model grows, model calibration becomes unavoidable 

and an increasingly important issue. Model calibration is accomplished by kludging (or tuning), which 
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is “an inelegant, botched together piece of program; something functional but somehow messy and 

unsatisfying, a piece of program or machinery which works up to a point” (quote by Smart as cited by 

Winsberg and Lenhard 2010). A kludge required in one model may not be required in another model 

that has greater structural adequacy or higher resolution. Continual ad hoc adjustment of the model 

(calibration) provides a means for the model to avoid being falsified; Occam’s razor presupposes that 

the model least dependent on continual ad hoc modification is to be preferred.  

A serious challenge to improving complex nonlinear models is that model complexity and 

analytic impenetrability precludes the precise evaluation of the location of parameter(s) that are 

producing the prediction error (Winsberg and Lenhard 2010).  For example, if a model is producing 

shortwave surface radiation fluxes that are substantially biased relative to observations, it is impossible 

to determine whether the error arises from the radiative transfer model, incoming solar radiation at the 

top of the atmosphere, concentrations of the gases that absorb shortwave radiation, physical and 

chemical properties of the aerosols in the model, morphological and microphysical properties of the 

clouds, convective parameterization that influences the distribution of water vapor and clouds, and/or 

characterization of surface reflectivity. Whether a new parameterization module adds to or subtracts 

from the overall reliability of the model may have more to do with some entrenched features of model 

calibration than it does with that module’s fidelity to reality when considered in isolation.

2.2 Confidence and credibility

“All models are wrong, but some are useful.”6 George E.P. Box

Confidence is a degree of certainty that a particular model is effective or useful.  Confidence is 

inspired by the model’s relation to theory and physical understanding of the processes involved, 

sensitivity of the simulations to model structure, the nature of the ad hoc adjustments and calibration, 

extensive exploration of model uncertainty, consistency of the simulated responses, and the ability of 

the model and model components to simulate historical observations (e.g. Knutti 2008). User 

confidence in a forecast model system depends critically on confirmation of forecasts, both using 
  

6 http://www.anecdote.com.au/archives/2006/01/all_models_are.html
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historical data (hindcasts, in-sample) and actual forecasts (out-of-sample observations). Parker (2009) 

argues that instances of fit between model output and observational data do not confirm the models 

themselves, but rather hypotheses about the adequacy of climate models for particular purposes. Hence 

model validation strategies depend on the intended application of the model. However, here is no 

generally agreed upon protocol for the validation of climate models (e.g. Guillemot, 2010).

User confidence in a forecast model depends critically on the confirmation of forecasts, both 

using historical data (hindcasts, in-sample) and out-of-sample observations (forecasts). Confirmation 

with out-of-sample observations is possible for forecasts have a short time horizon that can be 

compared with out-of-sample observations (e.g. weather forecasts). Unless the model can capture or 

bound a phenomenon in hindcasts and previous forecasts, there is no expectation that the model can 

quantify the same phenomena in subsequent forecasts. However, capturing the phenomena in 

hindcasts and previous forecasts does not in any way guarantee the ability of the model to capture the 

phenomena in the future, but it is a necessary condition (Smith 2002). If the distance of future 

simulations from the established range of model validity is small, it reasonable to extend established 

confidence in the model to the perturbed future state. Extending such confidence requires that no 

crucial feedback mechanisms are missing from the model (Smith 2002).

Even for in-sample validation, there is no straightforward definition of model performance for 

complex non-deterministic models having millions of degrees of freedom (e.g. Guillemot 

2010).  Because the models are not deterministic, multiple simulations are needed to compare with 

observations, and the number of simulations conducted by modeling centers are insufficient to 

establish a robust mean; hence bounding box approaches (assessing whether the range of the 

ensembles bounds the observations; Judd et al. 2007) are arguably a better way to establish empirical 

adequacy. A further complication arises if datasets used in the model evaluation process are the same 

as those used for calibration, which gives rise to circular reasoning (confirming the antecedent) in the 

evaluation process.

On the subject of confidence in climate models, Knutti (2008) summarizes: “So the best we 
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can hope for is to demonstrate that the model does not violate our theoretical understanding of the 

system and that it is consistent with the available data within the observational uncertainty.”

2.3  Simulations of the 21st century climate 

“There are many more ways to be wrong in a 106 dimensional space than there are ways to be right.”  

Leonard Smith (2006)

What kind of confidence can we have in the simulations of scenarios for the 21st century? Since 

projections of future climate relate to a state of the system that is outside the range of model validity, it 

is therefore impossible to either calibrate the model for the forecast regime of interest or confirm the 

usefulness of the forecasting process. The problem is further exacerbated by the lifetime of an 

individual model version being substantially less than the prediction lead-time (Smith 2002).

If the distance of future simulations from the established range of model validity is small, it 

reasonable to extend established confidence in the model to the perturbed future state.  In effect, such 

confidence requires that we assume that nothing happens that takes the model further beyond its range 

of validity, and that no crucial feedback mechanisms are missing from the model (Smith 2002). Of 

particular relevance to simulations with increased greenhouse gases is the possibility that slow changes 

in the forcing may push the model beyond a threshold and induce a transition to a second equilibrium. 

A key issue in assessing model adequacy for 21st century climate simulations is inclusion of 

longer time scale processes, such as the global carbon cycle and ice sheet dynamics. In addition to 

these known unknowns, there are other processes that we have some hints of, but currently have no 

way of quantifying (e.g. methane release from thawing permafrost). Confidence established in the 

atmospheric dynamical core as a result of the extensive cycles of evaluation and improvement of 

weather forecast models is important, but other factors become significant in climate models that have 

less import in weather models, such as mass conservation and cloud and water vapor feedback 

processes. 

Given the inadequacies of current climate models, how should we interpret the multi-model 

ensemble simulations of the 21st century climate used in the IPCC assessment reports?  This ensemble-
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of-opportunity is comprised of models with generally similar structures but different parameter 

choices and calibration histories (for an overview, see Knutti et al. 2008; Hargreaves 2010). 

McWilliams (2007) and Parker (2010) argue that current climate model ensembles are not designed to 

sample representational uncertainty in a thorough or strategic way.  Stainforth et al. (2007) argue that 

model inadequacy and an inadequate number of simulations in the ensemble preclude producing 

meaningful probability density functions (PDFs) from the frequency of model outcomes of future 

climate. Nevertheless, as summarized by Parker (2010), it is becoming increasingly common for 

results from individual multi-model and perturbed-physics simulations to be transformed into

probabilistic projections of future climate, using Bayesian and other techniques. Parker argues that the 

reliability of these probabilistic projections is unknown, and in many cases they lack robustness.  

Knutti et al. (2008) argues that the real challenge lies more in how to interpret the PDFs rather whether 

they should be constructed in the first place. Stainforth et al. (2007) warns against over interpreting 

current model results since they could be contradicted by the next generation of models, undermining 

the credibility of the new generation of model simulations.

Stainforth et al. (2007) emphasize that models can provide useful insights without being able 

to provide probabilities, by providing a lower bound on the maximum range of uncertainty and a range 

of possibilities to be considered. Kandlikar et al. (2005) argue that when sources of uncertainty are

well understood, it can be appropriate to convey uncertainty via full PDFs, but in other cases it will be

more appropriate to offer only a range in which one expects the value of a predictive variable to fall

with some specified probability, or to indicate the expected sign of a change without assigning a

magnitude. They argue that uncertainty should be expressed using the most precise means that can be 

justified, but unjustified more precise means should not be used.   
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3. Uncertainty and the IPCC

“You are so convinced that you believe only what you believe that you believe, that you remain utterly 
blind to what you really believe without believing you believe it.”7 Orson Scott Card, Shadow of the 
Hegemon

How to reason about uncertainties in the complex climate system and its computer simulations 

is not simple or obvious. Scientific debates involve controversies over the value and importance of 

particular classes of evidence as well as disagreement about the appropriate logical framework for 

linking and assessing the evidence. The IPCC faces a daunting challenge with regards to characterizing 

and reasoning about uncertainty, assessing the quality of evidence, linking the evidence into 

arguments, identifying areas of ignorance, and assessing confidence levels. 

3.1  Characterizing uncertainty

“A long time ago a bunch of people reached a general consensus as to what's real and what's not and 
most of us have been going along with it ever since.”8 Charles de Lint

Over the course of four Assessment Reports, the IPCC has given increasing attention to 

reporting uncertainties (e.g. Swart et al. 2009). The  “Guidance Paper” by Moss and Schneider (2000) 

recommended steps for assessing uncertainty in the IPCC Assessment Reports and a common 

vocabulary to express quantitative levels of confidence based on the amount of evidence (number of 

sources of information) and the degree of agreement (consensus) among experts.  

The IPCC guidance for characterizing uncertainty for the AR49 describes three approaches for 

indicating confidence in a particular result and/or that the likelihood that a particular conclusion is 

correct:

1.  A qualitative level-of-understanding scale describes the level of scientific understanding in terms of 

the amount of evidence available and the degree of agreement among experts. There can be limited, 

medium, or much evidence, and agreement can be low, medium, or high. 

2. A quantitative confidence scale estimates the level of confidence for a scientific finding, and ranges 

  
7 Source: http://en.wikiquote.org/wiki/Orson_Scott_Card
8 Source:  http://en.wikiquote.org/wiki/Charles_de_Lint
9 http://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf
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from ‘very high confidence’ (9 in 10 chance) to ‘very low confidence’ (less than 1 in 10 chance). 

3. A quantitative likelihood scale represents ‘a probabilistic assessment of some well-defined outcome 

having occurred or occurring in the future.’ The scale ranges from ‘virtually certain’ (greater than 

99% probability) to ‘exceptionally unlikely’ (less than 1% probability). 

Oppenheimer et al. (2007), Webster (2009), Petersen (2006), and Kandlikar et al. (2005) argue 

that future IPCC efforts need to be more thorough about describing sources and types of uncertainty, 

making the uncertainty analysis as transparent as possible. The InterAcademy Council (IAC)10

reviewed the IPCC’s performance on characterizing uncertainty.  In response to concerns raised in the 

review, the IAC made the following recommendations regarding the IPCC’s treatment of uncertainty:

• “Each Working Group should use the qualitative level-of-understanding scale in its Summary for 

Policymakers and Technical Summary, as suggested in IPCC’s uncertainty guidance for the 

Fourth Assessment.” This is a key element of uncertainty monster detection.

• “Chapter Lead Authors should provide a traceable account of how they arrived at their ratings for 

level of scientific understanding and likelihood that an outcome will occur.”  Failure to provide a 

traceable account is characteristic of uncertainty monster hiding.

• “Quantitative probabilities (as in the likelihood scale) should be used to describe the probability 

of well-defined outcomes only when there is sufficient evidence. Authors should indicate the 

basis for assigning a probability to an outcome or event (e.g., based on measurement, expert 

judgment, and/or model runs).” Using quantitative probabilities when there is insufficient 

evidence is uncertainty monster simplification.

The recommendations made by the IAC concerning the IPCC’s characterization of uncertainty 

are steps in the right direction in terms of dealing with the uncertainty monster. Curry (2011a) further 

argued that a concerted effort by the IPCC is needed to identify better ways of framing the climate 

change problem, exploring and characterizing uncertainty, reasoning about uncertainty in the context 

  
10 http://reviewipcc.interacademycouncil.net/
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of evidence-based logical hierarchies, and eliminating bias from the consensus building process itself.  

3.2  Reasoning about uncertainty

“It is not so much that people hate uncertainty, but rather that they hate losing.”11 Amos Tversky

The IPCC characterization of characterization is based upon a consensus building process that 

is an exercise in collective judgment in areas of uncertain knowledge. The general reasoning 

underlying the IPCC’s arguments for anthropogenic climate change combines a compilation of 

evidence with subjective Bayesian reasoning. This process is described by Oreskes (2007) as 

presenting a ‘consilience of evidence’ argument, which consists of independent lines of evidence that 

are explained by the same theoretical account. 

Given the complexity of the climate problem, expert judgments about uncertainty and 

confidence levels are made by the IPCC on issues that are dominated by unquantifiable uncertainties. 

Curry (2011a) argues that because of the complexity of the issues, individual experts use different 

mental models for evaluating the interconnected evidence. Biases can abound when reasoning and 

making judgments about such a complex problem. Bias can occur by excessive reliance on a particular 

piece of evidence, the presence of cognitive biases in heuristics, failure to account for indeterminacy 

and ignorance, and logical fallacies and errors including circular reasoning. The IAC states that 

“Studies suggest that informal elicitation measures, especially those designed to reach consensus, lead 

to different assessments of probabilities than formal measures. Informal procedures often result in 

probability distributions that place less weight in the tails of the distribution than formal elicitation 

methods, possibly understating the uncertainty associated with a given outcome.”

Oreskes (2007) draws an analogy for the consilience of evidence approach with what happens 

in a legal case. Continuing with the legal analogy, Johnston (2010) characterized the IPCC’s 

arguments as a legal brief, designed to persuade, in contrast to a legal memo that is intended to 

objectively assess both sides. Along the lines of a legal memo, Curry (2011a) argues that the 

  
11 http://tedbilich.com/2010/03/03/take-more-risks-advice-from-a-dinosaur/
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consilience of evidence argument is not convincing unless it includes parallel evidence-based analyses 

for competing hypotheses, and hence a critical element in uncertainty monster detection. Any 

evidence-based argument that is more inclined to admit one type of evidence or argument rather than 

another tends to be biased. Parallel evidence-based analysis of competing hypotheses provides a 

framework whereby scientists with a plurality of viewpoints participate in an assessment. In a 

Bayesian analysis with multiple lines of evidence, it is conceivable that there are multiple lines of 

evidence that produce a high confidence level for each of two opposing arguments, which is referred to 

as the ambiguity of competing certainties.  If uncertainty and ignorance are acknowledged adequately, 

then the competing certainties disappear.  Disagreement then becomes the basis for focusing research 

in a certain area, and so moves the science forward.

4.  Uncertainty in the attribution of 20th century climate change

“Give me four parameters, and I can fit an elephant. Give me five, and I can wiggle its trunk."12 John 
von Neumann

Arguably the most important conclusion of IPCC AR4 is the following statement: “Most of 

the observed increase in global average temperatures since the mid-20th century is very likely due to 

the observed increase in anthropogenic greenhouse gas concentrations.” This section raises issues 

regarding the uncertainties that enter into the attribution argument, ambiguities in the attribution 

statement and apparent circular reasoning, and lack of traceability of the ‘very likely’ likelihood 

assessment. 

4.1  IPCC’s detection and attribution argument

“What we observe is not nature itself, but nature exposed to our method of questioning.”13 Werner 
Karl Heisenberg 

The problem of attributing climate change is intimately connected with the detection of 

climate change. A change in the climate is ‘detected’ if its likelihood of occurrence by chance due to 

  
12 Source: http://en.wikiquote.org/wiki/John_von_Neumann
13 http://www.anvari.org/fortune/Quotations_By_Famous_People/8659_what-we-observe-is-not-nature-itself-
but-nature-exposed-to-our-method-of-questioning.html
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internal variability alone is determined to be small. Knowledge of internal climate variability is needed 

for both detection and attribution. Because the instrumental record is too short to give a well-

constrained estimate of internal variability, internal climate variability is usually estimated from long 

control simulations from coupled climate models. The IPCC AR4 (Chapter 9, Hegerl et al. 2007)

formulates the problem of attribution to be: “In practice attribution of anthropogenic climate change is 

understood to mean demonstration that a detected change is consistent with the estimated responses to 

the given combination of anthropogenic and natural forcing and not consistent with alternative, 

physically plausible explanations of recent climate change that exclude important elements of the 

given combination of forcings.”

Detection and attribution analyses use objective statistical tests to assess whether observations 

contain evidence of the expected responses to external forcing that is distinct natural internal 

variability.  Expected responses, or ‘fingerprints,’ are determined from climate models and physical 

understanding of the climate system. Formal Bayesian reasoning is used to some extent by the IPCC 

in making inferences about detection and attribution. The reasoning process used in assessing 

likelihood in the attribution statement is described by this statement from the AR4 (section 9.4):

“The approaches used in detection and attribution research described above cannot fully account for 

all uncertainties, and thus ultimately expert judgment is required to give a calibrated assessment of 

whether a specific cause is responsible for a given climate change. The assessment approach used in 

this chapter is to consider results from multiple studies using a variety of observational data sets, 

models, forcings and analysis techniques. The assessment based on these results typically takes into 

account the number of studies, the extent to which there is consensus among studies on the 

significance of detection results, the extent to which there is consensus on the consistency between 

the observed change and the change expected from forcing, the degree of consistency with other types 

of evidence, the extent to which known uncertainties are accounted for in and between studies, and 

whether there might be other physically plausible explanations for the given climate change. Having 

determined a particular likelihood assessment, this was then further downweighted to take into 
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account any remaining uncertainties, such as, for example, structural uncertainties or a limited 

exploration of possible forcing histories of uncertain forcings. The overall assessment also considers 

whether several independent lines of evidence strengthen a result.”

The IPCC AR4 (Chapter 9) describes two types of simulation methods that have been used in 

detection and attribution studies. The first method is a ‘forward calculation’ that uses best estimates of 

external changes in the climate system (forcings) to simulate the response of the climate system using 

a climate model. These forward calculations are then directly compared to the observed changes in the 

climate system. The second method is an ‘inverse calculation’ whereby the magnitude of uncertain 

model parameters and applied forcing is varied in order to provide a best fit to the observational 

record. While the exact reasoning underlying the IPCC’s likelihood assessment is unclear, the 

important role of coupled climate models in the assessment is indicated by the fact that 12 of the 14 

figures in sections 9.2 -- 9.4 of Hegerl et al. (2007) are based upon the results of climate model 

simulations.

Whereas all of the climate model simulations and various attribution studies agree that the 

warming observed since 1970 can only be reproduced using anthropogenic forcings, models and 

attribution analyses disagree on the relative importance of solar, volcanic, and aerosol forcing in the 

earlier part of the 20th century (IPCC AR4 Section 9.4.1). The substantial warming during the period 

1910-1940 has been attributed by nearly all the modeling groups to some combination of increasing 

solar irradiance and a lack of major volcanic activity. The cooling and leveling off of average global 

temperatures during the 1950’s and 1960’s is attributed primarily to aerosols from fossil fuels and 

other sources, when the greenhouse warming was overwhelmed by aerosol cooling. 

4.2  Sources of uncertainty

“Not only does God play dice, but sometimes he throws the dice where we can’t see them.”14  Stephen 
Hawking

Attribution of observed climate change is affected by errors and uncertainties in the prescribed 

  
14 http://www.hawking.org.uk/index.php/lectures/64
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external forcing and in the model’s capability to simulate both the response to the forcing (sensitivity) 

and decadal scale natural internal variability. Uncertainties in the model and forcing are acknowledged 

by the AR4 (Chapter 9): “Ideally, the assessment of model uncertainty should include uncertainties in 

model parameters (e.g., as explored by multi-model ensembles), and in the representation of physical 

processes in models (structural uncertainty). Such a complete assessment is not yet available, although 

model intercomparison studies improve the understanding of these uncertainties. The effects of forcing 

uncertainties, which can be considerable for some forcing agents such as solar and aerosol forcing 

(Section 9.2), also remain difficult to evaluate despite advances in research.” 

The level of scientific understanding of radiative forcing is ranked by the AR4 (Table 2.11; 

Forster et al. 2007) as high only for the long-lived greenhouse gases, but is ranked as low for solar 

irradiance, aerosol effects, stratospheric water vapor from CH4, and jet contrails. Radiative forcing 

time series for the natural forcings (solar, volcanic aerosol) are reasonably well known for the past 25 

years, with estimates further back in time having increasingly large uncertainties.

Based upon new and more reliable solar reconstructions, the AR4 (Section 2.7.1.2) concluded 

that the increase in solar forcing during the period 1900-1980 used in the AR3 reconstructions is 

questionable and the direct radiative forcing due to increase in solar irradiance is reduced substantially 

from the AR3.  However, consideration of Table S9.1 in the AR4 shows that each climate model used 

outdated solar forcing (from the AR3) that was assessed to substantially overestimate the magnitude of 

the trend in solar forcing prior to 1980. The IPCC AR4 states: “While the 11-year solar forcing cycle 

is well documented, lower-frequency variations in solar forcing are highly uncertain.” Furthermore, 

“Large uncertainties associated with estimates of past solar forcing (Section 2.7.1) and omission of 

some chemical and dynamical response mechanisms make it difficult to reliably estimate the 

contribution of solar forcing to warming over the 20th century.”

The greatest uncertainty in radiative forcing is associated with aerosols, particularly the 

aerosol indirect effect whereby aerosols influence cloud radiative properties.  Consideration of Figure 

2.20 of the AR4 shows that, given the uncertainty in aerosol forcing, the magnitude of the aerosol 

forcing (which is negative, or cooling) could rival the forcing from long-lived greenhouse gases 

(positive, or warming). The 20th century aerosol forcing used in most of the AR4 model simulations 
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(Section 9.2.1.2) relies on inverse calculations of aerosol optical properties to match climate model 

simulations with observations. The only constraint on the aerosol forcing used in the AR4 attribution 

studies is that the derived forcing should be within the bounds of forward calculations that determine 

aerosol mass from chemical transport models, using satellite data as a constraint. The inverse method 

effectively makes aerosol forcing a tunable parameter (kludge) for the model, particularly in the pre-

satellite era.  Further, key processes associated with the interactions between aerosols and clouds are 

either neglected or treated with simple parameterizations in climate model simulations evaluated in the 

AR4.  

Given the large uncertainties in forcings and model inadequacies in dealing with these 

forcings, how is it that each model does a credible job of tracking the 20th century global surface 

temperature anomalies (AR4 Figure 9.5)? Schwartz (2004) notes that the intermodel spread in 

modeled temperature trend expressed as a fractional standard deviation is much less than the 

corresponding spread in either model sensitivity or aerosol forcing, and this comparison does not 

consider differences in solar and volcanic forcing. This agreement is accomplished through inverse 

calculations, whereby modeling groups can select the forcing data set and model parameters that 

produces the best agreement with observations. While some modeling groups may have conducted 

bona fide forward calculations without any a posteriori selection of forcing data sets and model 

parameters to fit the 20th century time series of global surface temperature anomalies, the available 

documentation on each model’s tuning procedure and rationale for selecting particular forcing data 

sets is not generally available.

The inverse calculations can mask variations in sensitivity among the different models.  If a 

model’s sensitivity is high, greater aerosol forcing is used to counter the greenhouse warming, and vice 

versa for low model sensitivity (Kiehl 2007). Schwartz (2004) argues that uncertainties in aerosol 

forcing must be reduced at least three-fold for uncertainty in climate sensitivity to be meaningfully 

reduced and bounded. Further, kludging and neglect of ontic uncertainty in the tuning can result in a 

model that is over- or under-sensitive to certain types or scales of forcing.  

With regards to the ability of climate models to simulate natural internal variability on decadal 

time scales, “there has been little work evaluating the amplitude of the main modes of Pacific decadal 
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variability in [coupled climate models].” (IPCC AR4, Chapter 8; Randall et al. 2007).  Whereas most 

climate models simulate something that resembles the Meridional Overturning Circulation (MOC), 

“the mechanisms that control the variations in the MOC are fairly different across the ensemble of 

[coupled climate models.]” Comparison of the power spectra of observed and modeled global mean 

temperatures in Figure 9.4 of the IPCC AR4 shows that all models underestimate the amplitude of 

variability on periods of 40-70 years, which encompasses key modes of multidecadal natural internal 

variability such as the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation.

4.3  Bootstrapped plausibility

“If it was so, it might be, and if it were so, it would be; but as it isn’t it ain’t.  That’s logic!”15 Charles 
Lutwidge Dodgson (Lewis Carroll)

Bootstrapped plausibility (Agassi 1974) occurs with a proposition that is rendered plausible

that in turn then lends plausibility to some of the proposition’s more doubtful supporting arguments. 

As such, bootstrapped plausibility occurs in the context of circular reasoning, which is fallacious due 

to a flawed logical structure whereby the proposition to be proved is implicitly or explicitly assumed in 

one of the premises. This subsection argues that the IPCC’s detection and attribution arguments 

involve circular reasoning, and that confidence in the evidence and argument is elevated by 

bootstrapped plausibility.

Consider the following argument that apparently underlies the general reasoning behind the 

AR4’s attribution statement:

1. Detection. Climate change in the latter half of the 20th century is detected based primarily upon 

increases in global surface temperature anomalies that are far larger than can be explained by 

natural internal variability.

2. Confidence in detection. The quality of agreement between model simulations with 20th century 

forcing and observations supports the likelihood that models are adequately simulating the 

magnitude of natural internal variability on decadal to century time scales. From the IPCC AR4:  

“However, models would need to underestimate variability by factors of over two in their 

  
15 Source: http://en.wikiquote.org/wiki/Through_the_Looking-Glass
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standard deviation to nullify detection of greenhouse gases in near-surface temperature data, 

which appears unlikely given the quality of agreement between models and observations at 

global and continental scales (Figures 9.7 and 9.8) and agreement with inferences on 

temperature variability from NH temperature reconstructions of the last millennium.” 

3. Attribution. Attribution analyses including climate model simulations for the 20th century 

climate that combine natural and anthropogenic forcing agree much better with observations 

than simulations that include only natural forcing. From the IPCC AR4: “The fact that climate 

models are only able to reproduce observed global mean temperature changes over the 20th 

century when they include anthropogenic forcings, and that they fail to do so when they exclude 

anthropogenic forcings, is evidence for the influence of humans on global climate.”

4. Confidence in attribution. Detection and attribution results based on several models or several 

forcing histories suggest that the attribution of a human influence on temperature change during 

the latter half of the 20th century is a robust result. From the IPCC AR4: “Detection and 

attribution results based on several models or several forcing histories do provide information on 

the effects of model and forcing uncertainty. Such studies suggest that while model uncertainty 

is important, key results, such as attribution of a human influence on temperature change during 

the latter half of the 20th century, are robust.”

The strong agreement between forced climate model simulations and observations for the 20th

century (premise #3) provides bootstrapped plausibility to the models and the external forcing data. 

However, this strong agreement depends heavily on inverse modeling, whereby forcing data sets 

and/or model parameters are selected based upon the agreement between models and the time series of 

20th century observations. Further confidence in the models is provided by premise #4, even though the 

agreement of different models and forcing datasets arises from the selection of forcing data sets and 

model parameters by inverse calculations designed to agree with the 20th century time series of global 

surface temperature anomalies. This agreement is used to argue that “Detection and attribution studies 
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using such simulations suggest that results are not very sensitive to moderate forcing uncertainties.”

(AR4, Chapter 9).

Confidence in the climate models that is elevated by inverse calculations and bootstrapped 

plausibility is used as a central premise in the argument that climate change in the latter half of the 20th

century is much larger than can be explained by natural internal variability (premise #1).  Premise #1 

underlies the IPCC’s assumption (AR4, Chapter 9) that “Global mean and hemispheric-scale 

temperatures on multi-decadal time scales are largely controlled by external forcings” and not natural 

internal variability. In effect, the IPCC’s argument has eliminated multi-decadal natural internal 

variability as a causative factor for 20th century climate change. Whereas each model demonstrates 

some sort of multidecadal variability (which may or may not be of a reasonable amplitude or 

associated with the appropriate mechanisms), the ensemble averaging process filters out the simulated 

natural internal variability since there is no temporal synchronization in the simulated chaotic internal 

oscillations among the different ensemble members.   

The IPCC’s detection and attribution method is meaningful to the extent that the models agree 

with observations against which they were not tuned and to the extent that the models agree with each 

other in terms of attribution mechanisms. The AR4 has demonstrated that greenhouse forcing is a 

plausible explanation for warming in the latter half of the 20th century, but cannot rule out substantial 

warming from other causes such as solar forcing and internal multi-decadal ocean oscillations owing

to the circular reasoning and to the lack of convincing attribution mechanisms for the warming during 

1910-1940 and the cooling during the 1940’s and 1950’s. 

Bootstrapped plausibility and circular reasoning in detection and attribution arguments can be 

avoided by:

• use of the same best estimate of forcing components from observations or forward modeling for 

multi-model ensembles;

• conducting tests of the sensitivity to uncertainties associated with the forcing datasets using a 

single model;
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• improving understanding of multi-decadal natural internal variability and the models’ ability to 

simulate its magnitude; 

• improving detection and attribution schemes to account for the models’ inability to simulate the 

timing of phases of natural internal oscillations and the meridional overturning circulation;

• consideration of the broad range of confounding factors in assessing likelihood and confidence, 

including observational errors, model errors and uncertainties, uncertainties in internal 

variability, and inadequacies in the fingerprinting methodology. 

The experimental design being undertaken for the CMIP5 simulations16 to be used in the IPCC 

AR5 shows improvements that should eliminate some of the circular reasoning that was evident in the 

AR4 attribution argument. In the CMIP5 simulations, the use of specific best estimate data sets of 

forcing for solar and aerosols is recommended.  The NCAR Community Climate System model 20th

century simulations for CMIP5 (Gent et al. 2011) arguably qualifies as a completely forward 

calculation, with forcing data sets being selected a priori and no tuning of parameters in the coupled 

model to the 20th century climate other than the sea ice albedo and the low cloud relative humidity 

threshold.  The results of NCAR’s CMIP5 calculations show that after 1970, the simulated surface 

temperature increases faster than the data, so that by 2005 the model anomaly is 0.4oC larger than the 

observed anomaly.  Understanding this disagreement should provide an improved understanding of the 

model uncertainties and uncertainties in the attribution of the recent warming.  This disagreement 

implies that the detection and attribution argument put forth in the AR4 that was fundamentally based 

upon the good agreement between models and observations will not work in the context of at least 

some of the CMIP5 simulations.

Since no traceable account is given in the AR4 of how the likelihood assessment in the 

attribution statement was reached, it is not possible to determine what the qualitative judgments of the 

lead authors were on the methodological reliability of their claim. Further, the attribution statement 

itself is at best imprecise and at worst ambiguous: what does “most” mean – 51% or 99%?  The high 

likelihood of the imprecise “most” seems rather meaningless (uncertainty monster simplification).  

  
16 http://www.clivar.org/organization/wgcm/references/Taylor_CMIP5.pdf
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From the IAC:  “In the Committee’s view, assigning probabilities to imprecise statements is not an 

appropriate way to characterize uncertainty.”

4.4  Logic of the attribution statement

“Often, the less there is to justify a traditional custom, the harder it is to get rid of it.”17 Mark Twain

Over the course of the four IPCC assessments, the attribution statement has evolved in the 

following way:

• FAR (1990):  “The size of this warming is broadly consistent with predictions of climate 

models, but it is also of the same magnitude as natural climate variability Thus the observed 

increase could be largely due to this natural variability, alternatively this variability and other 

human factors could have offset a still larger human-induced greenhouse warming. The 

unequivocal detection of the enhanced greenhouse effect from observations is not likely for a 

decade or more.”

• SAR (1995): "The balance of evidence suggests a discernible human influence on global 

climate."

• TAR (2001):  “There is new and stronger evidence that most of the warming observed over the 

last 50 years is attributable to human activities."

• AR4 (2007):  “Most of the observed increase in global average temperatures since the mid-20th

century is very likely due to the observed increase in anthropogenic greenhouse gas 

concentrations.”

The attribution statements have evolved from “discernible” in the SAR to “most” in the TAR 

and AR4, demonstrating an apparent progressive exorcism of the uncertainty monster. The attribution 

statements are qualitative and imprecise in the sense of using words such as “discernible” and “most.”  

The AR4 attribution statement is qualified with “very likely” likelihood.   As stated previously by the 

  
17 http://thinkexist.com/quotations/logic/
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IAC, assigning probabilities to imprecise statements is not an appropriate way to characterize 

uncertainty.  

The utility of the IPCC’s attribution statement is aptly summarized by this quote18 from a 

document discussing climate change and national security:

“For the past 20 years, scientists have been content to ask simply whether most of the observed 

warming was caused by human activities. But is the percentage closer to 51 percent or to 99 

percent? This question has not generated a great deal of discussion within the scientific 

community, perhaps because it is not critical to further progress in understanding the climate 

system. In the policy arena, however, this question is asked often and largely goes unanswered.”

The logic of the IPCC AR4 attribution statement is discussed by Curry (2011b).  Curry argues 

that the attribution argument cannot be well formulated in the context of Boolean logic or Bayesian 

probability. Attribution (natural versus anthropogenic) is a shades-of-gray issue and not a black or 

white, 0 or 1 issue, or even an issue of probability.  Towards taming the attribution uncertainty 

monster, Curry argues that fuzzy logic provides a better framework for considering attribution, 

whereby the relative degrees of truth for each attribution mechanism can range in degree between 0 

and 1, thereby bypassing the problem of the excluded middle. There is general agreement that the 

percentages of warming each attributed to natural and anthropogenic causes is less than 100% and 

greater than 0%.  The challenge is to assign likelihood values to the distribution of the different 

combinations of percentage contributions of natural and anthropogenic contributions. Such a 

distribution may very show significant likelihood in the vicinity of 50-50, making a binary 

demarcation at the imprecise “most” a poor choice.

5. Taming the uncertainty monster

  
18 Lost in Translation:  Closing the Gap Between Climate Science and National Security Policy, published by 
the Center for a New American Security 
http://www.cnas.org/files/documents/publications/Lost%20in%20Translation_Code406_Web_0.pdf
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“I used to be scared of uncertainty; now I get a high out of it.”19 Jensen Ackles

Symptoms of an enraged uncertainty monster include increased levels of confusion, ambiguity, 

discomfort and doubt. Evidence that the monster is currently enraged includes: doubt that was 

expressed particularly by European policy makers at the climate negotiations at Copenhagen (van der 

Sluijs et al. 2010), defeat of a seven-year effort in the U.S. Senate to pass a climate bill centered on 

cap-and-trade, increasing prominence of skeptics in the news media, and the formation of an 

InterAcademy Independent Review of the IPCC. 

The monster is too big to hide, exorcise or simplify.  Increasing concern that scientific dissent 

is underexposed by the IPCC’s consensus approach argues for ascendancy of the monster detection 

and adaptation approaches. The challenge is to open the scientific debate to a broader range of issues 

and a plurality of viewpoints and for politicians to justify policy choices in a context of an inherently 

uncertain knowledge base (e.g. Sarewitz 2004).  Some ideas for monster taming strategies at the levels 

of institutions, individual scientists, and communities are presented.

5.1 Taming strategies at the institutional level

“The misuse that is made [in politics] of science distorts, politicizes and perverts that same science, 
and now we not only must indignantly cry when science falters, we also must search our 
consciences.”20 Dutch parliamentarian Diederik Samsom

The politics of expertise describes how expert opinions on science and technology are 

assimilated into the political process (Fischer, 1989).  A strategy used by climate policy proponents to 

counter the strategies of the merchants of doubt (Oreskes and Conway, 2010; Schneider and Flannery, 

2009) has been the establishment of a broad international scientific consensus with high confidence 

levels, strong appeals to the authority of the consensus relative to opposing viewpoints, and exposure 

of the motives of skeptics.  While this strategy might have been arguably useful, needed or effective at 

some earlier point in the debate to counter the politically motivated merchants of doubt, these 

strategies have enraged the uncertainty monster, particularly since the Climategate emails and errors 

that were found in the AR4 WGII Report (e.g. van der Sluijs et al 2010).  

Oppenheimer et al. (2007) remark: “The establishment of consensus by the IPCC is no longer 
  

19 Source: http://www.brainyquote.com/quotes/quotes/j/jensenackl409775.html
20 Cited by van der Sluijs et al. (2010)
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as important to governments as a full exploration of uncertainty.”  The institutions of climate science 

such as the IPCC, the professional societies and scientific journals, national funding agencies, and 

national and international policy making bodies have a key role to play in taming the uncertainty 

monster.  Objectives of taming the monster at the institutional level are to improve the environment for 

dissent in scientific arguments, make climate science less political, clarify the political values and 

visions in play, expand political debate, and encourage experts in the social sciences, humanities and 

engineering to participate in the evaluation of climate science and its institutions.  Identifying areas 

where there are important uncertainties should provide a target for research funding.

5.2 Taming strategies for the individual scientist

“Science . . . never solves a problem without creating ten more.”21 George Bernard Shaw

Individual scientists can tame the uncertainty monster by clarifying the confusion and 

ambiguity associated with knowledge versus ignorance and objectivity versus subjectivity. Morgan et 

al. (2009) argue that doing a good job of characterizing and dealing with uncertainty can never be 

reduced to a simple cookbook, and that one must always think critically and continually ask questions. 

Spiegelhalter22 provided the following advice at the recent Workshop on Uncertainty in Science at the 

Royal Society:

• We should try and quantify uncertainty where possible

• All useful uncertainty statements require judgment and are contingent

• We need clear language to honestly communicate deeper uncertainties with due humility and 

without fear

• For public confidence, trust is more important than certainty

Richard Feynman’s address23 on “Cargo Cult Science” clearly articulates the scientist’s 

responsibility:  “Details that could throw doubt on your interpretation must be given, if you know 

them. You must do the best you can -- if you know anything at all wrong, or possibly wrong -- to 

explain it. If you make a theory, for example, and advertise it, or put it out, then you must also put 

  
21 Source: http://thinkexist.com/quotation/science-never_solves_a_problem_without_creating/206801.html
22 http://downloads.royalsociety.org/audio/DM/DM2010_03/Speigelhalter.mp3
23 http://calteches.library.caltech.edu/3043/1/CargoCult.pdf
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down all the facts that disagree with it, as well as those that agree with it . . . In summary, the idea is to 

try to give all of the information to help others to judge the value of your contribution; not just the 

information that leads to judgment in one particular direction or another.”

5.3 Impact of integrity on the monster

“He who fights with monsters might take care lest he thereby become a monster.”24 Friedrich 
Nietzsche

Integrity is an issue of particular importance at the science-policy interface, particularly when 

the scientific case is represented by a consensus that is largely based on expert opinion.  Integrity is to 

the uncertainty monster as garlic is to a vampire.

Gleick (2007) distinguishes a number of tactics that are threats to the integrity of science: 

appealing to emotions; making personal (ad hominem) attacks; deliberately mischaracterizing an 

inconvenient argument; inappropriate generalization; misuse of facts and uncertainties; false appeal to 

authority; hidden value judgments; selectively omitting inconvenient measurement results; and 

packing advisory boards. 

The issue of integrity is substantially more complicated at the science-policy interface, 

particularly since the subject of climate change has been so highly politicized.  A scientist’s statement 

regarding scientific uncertainty can inadvertently become a political statement that is misused by the 

merchants of doubt for political gain. Navigating this situation is a considerable challenge, as 

described by Pielke (2007). Individual scientists can inadvertently compromise their scientific integrity 

for what they perceive to be good motives. Whereas such actions can provide temporary political 

advantages or temporarily bolster the influence of an individual scientist, the only remedy in the long 

run is to let the scientific process take its course and deal with uncertainty in an open and honest way.  

5.4 The hopeful monster

“There are very few monsters who warrant the fear we have of them.”25 Andre Gide

The “hopeful monster” is a colloquial term used in evolutionary biology to describe the 

production of new major evolutionary groups.  Here we invoke the hopeful monster metaphor to 

  
24 Source:  http://en.wikiquote.org/wiki/Friedrich_Nietzsche
25 http://thinkexist.com/quotation/there_are_very_few_monsters_who_warrant_the_fear/220955.html
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address the possibility of taming the monster through the evolution of new entities, enabled by social 

computing.  

When the stakes are high and uncertainties are large, Funtowicz and  Ravetz (1993) point out that 

there is a public demand to participate and assess quality, which they refer to as the extended peer 

community. The extended peer community consists not only of those with traditional institutional 

accreditation that are creating the technical work, but also those with much broader expertise that are 

capable of doing quality assessment and control on that work. 

New information technology and the open knowledge movement are enabling the hopeful 

monster. These new technologies facilitate the rapid diffusion of information and sharing of expertise, 

giving hitherto unrealized power to the peer communities.  This newfound power has challenged the 

politics of expertise, and the “radical implications of the blogosphere” (Ravetz) are just beginning to 

be understood.  Climategate illustrated the importance of the blogosphere as an empowerment of the 

extended peer community, “whereby criticism and a sense of probity were injected into the system by 

the extended peer community from the blogosphere” (Ravetz)26.

While the uncertainty monster will undoubtedly evolve and even grow, it can be tamed 

through understanding and acknowledgement, and we can learn to live with it by adapting our policies 

to explicitly include uncertainty. Beck et al.’s (2009) statement describes a tamed and happy monster:  

“Being open about uncertainty should be celebrated: in illuminating where our explanations and 

predictions can be trusted and in proceeding, then, in the cycle of things, to amending their flaws and 

blemishes.”
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