Welcome to NUSAP net

Robust knowledge for Sustainability

Post Normal Science
Participatory IA
Sensitivity Analysis
Expert elicitation
Uncertainty Communication
Pluralistic uncert. management

Reports, papers, ...
RIVM/MNP Uncertainty Guidance
Model quality checklist
Interactive tools
Pedigree matrices

Related websites
Post Normal Times
The Integrated Assessment Society
Precautionary Principle
Renewable Energy Master

Main Menu
Web Links
Your Account
Top 10

Other Options
· Members List

Welcome to NUSAP net Glossary

[ A |  B |  C |  D |  E |  F |  G |  H |  I |  J |  K |  L |  M |  N |  O |  P |  Q |  R |  S ]
[ T |  U |  V |  W |  X |  Y |  Z |  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 |  0 ]

[ 1 ]
Terms Definitions
Technological surprise
Transparency The degree to which a model is transparent. A model is said to be transparent if all key assumptions that underlie the model are accessible and understandable for the users.
Type I error also: Error of the first kind. In hypothesis testing, this error is caused by incorrect rejection of the hypothesis when it is true. Any test is at risk of being too selective and too sensitive. The design of the test, especially confidence limits, aims at reducing the likelihood of one type of error at the price of increasing the other. Thus, all such statistical tests are value laden.
Type II error also: Error of the second kind. In hypothesis testing this error is caused by not rejecting the hypothesis when it is false.
Type III error also: Error of the third kind. Assessing or solving the wrong problem by incorrectly accepting the false meta-hypothesis that there is no difference between the boundaries of a problem, as defined by the analyst, and the actual boundaries of that problem (Raifa, 1968, redefined by Dunn, 1997, 2000).
[ 1 ]