Welcome to NUSAP net
  

Robust knowledge for Sustainability

Tutorials
· Post Normal Science
· NUSAP
· Participatory IA
· Sensitivity Analysis
· GLUE
· Expert elicitation
· Uncertainty Communication
· Pluralistic uncert. management
· Glossary


Sections
· Reports, papers, ...
· RIVM/MNP Uncertainty Guidance
· Model quality checklist
· Interactive tools
· Pedigree matrices


Related websites
· Post Normal Times
· The Integrated Assessment Society
· Precautionary Principle
· Renewable Energy Master


Main Menu
· Home
· Reviews
· Web Links
· Downloads
· Your Account
· Top 10

Other Options
· Members List


  
Welcome to NUSAP net Glossary

[ A |  B |  C |  D |  E |  F |  G |  H |  I |  J |  K |  L |  M |  N |  O |  P |  Q |  R |  S ]
[ T |  U |  V |  W |  X |  Y |  Z |  1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 |  0 ]


[ 1 ]
 
Terms Definitions
Natural randomness
Normal science The term 'normal science' was coined by T.S.Kuhn (1962), and Funtowicz and Ravetz (1990) referred to it when explaining their post-normal science'. In their words: "By 'normality' we mean two things. One is the picture of research science as 'normally' consisting of puzzle solving within an unquestioned and unquestionable 'paradigm', in the theory of T.S. Kuhn (Kuhn 1962). Another is the assumption that the policy environment is still 'normal', in that such routine puzzle solving by experts provides an adequate knowledge base for policy decisions. Of course researchers and experts must do routine work on small-scale problems; the question is how the framework is set, by whom, and with whose awareness of the process. In 'normality', either science or policy, the process is managed largely implicitly, and is accepted unwittingly by all who wish to join in."
Numerical error Numerical error arises from approximations in numerical solution, rounding of numbers and numerical precision (number of digits) of the represented numbers. Complex models include a large number of linkages and feedbacks which enhances the chance that unnoticed numerical artifacts influence the model behaviour to a significant extent. The systematic search for artifacts in model behaviour which are caused by numerical error, requires a mathematical 'tour de force' for which no standard recipe can be given. It will depend on the model at hand how one should set up the analysis.
To secure against error due to rounding of numbers, one can test the sensitivity of the results to the number of digits accounted for in floating-point operations in model calculations. A pitfall here is pseudo precision.
NUSAP Acronym for Numeral Unit Spread Assessment Pedigree
Notational system developed by Silvio Funtowicz and Jerry Ravetz to better manage and communicate uncertainty in science for policy.
 
[ 1 ]

nusap.net