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1. Why numerical uncertainty needs management

As of September 2001 the world suddenly became a very uncertain place.
Armed with minimalist equipment and probably a minimal budget, a few dozen
fanatics successfully waged war on the heartland of the United States of America.
There was universal agreement that this was an event that defined the end of one
epoch and the opening of a new one. What was last, particularly to Americans, was
the sense of security and safety. Now there is a new sort of complicated war, against
a new sort of covert enemy, in which uncertainty is at the core.

This new sensibility must affect all other areas of thought and practice. For
the management of the environment, it will have a positive effect. The tendency to
the complacency about the state of the environment, and the skepticism about
warnings of environmental deterioration and harm, both widespread and officially
sanctioned in America, will no longer feel plausible and right. Uncertainty will
come to the focus of awareness; and its effective management in environmnental
debates will be more important than ever.

In preparing for this new work, we must start with an appreciation that
uncertainty is not well managed at present. In particular, number, the traditional
language of science, is actually quite ill adapted for managing the sorts of
uncertainty that we now confront. In this essay | will introduce a new system for the
characterisation of uncertainty in quantitative information. Detailed discussions,
and examples of fruitful application, are freely available elsewhere. Here I will
content myself with showing that there is indeed a problem, that uncertainty exists
and our existing conceptual tools are inadequate.

If not properly managed, uncertainty causes confusion in two ways.
Frequently those who are promoting some development will cite numbers,
frequently quite precise, which characterise both the benefits and the possible
environmental costs on the basis of scientific studies. Those who have reservations
about the project can voice their worries about ways that things can go wrong. But
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they will lose the rhetorical battle unless they can make a constructive criticism of
the 'magic numbers' used to demonstrate safety, and can also express their concerns
in a clear fashion. If their scientific case goes by default, they will then be
handicapped in other aspects of the dispute as well.

It also happens sometimes that there is considerable uncertainty on all sides
of a debate; this happens when global environmental issues are at stake. Then each
side can 'play the numbers game’, seizing on the uncertainties in each other's
estimates. Without any agreed rules and discipline for managing the uncertainties,
the game can go on without end. But since we have had no experiencing of
evaluating scientific numbers, assessing their uncertainties and quality, we have
great difficulty in bringing a discipline to those open-ended debates.

We now have a great and confusing contrast, between the precise scientific
numbers we have always been shown, at school and by the experts, and the massive
uncertainties that confront us when we try to engage in a real debate on
environmental issues. Up to now, all our thinking about science has been based on
the assumption that it produces hard, objective facts which are conveyed in precise
numerical expressions. This is the lesson that students of science learn in their
studies; and it is all the more persuasive because it is never mentioned. Students
just learn that for every scientific problem there is a number, and just one number,
that gives the answer. The idea that a scientific problem might have a whole range
of numbers for the answer, or perhaps no numerical answer at all, just doesn't
happen in science education. In this way we have actually been misled; in its
emphasis on the great edifice of accomplished knowledge, our education has
hampered our awareness of the important areas of ignorance that remain.

2. An example: hard decisions with soft numbers.

We are now coming to recognise that the science involved in environmental
decision making is affected by deep uncertainties, for whch no answer may be
forthcoming. For a current important example, there is the crucial parameter that
comes into global climate change: the concentration of CO2 in the atmosphere. We
have measures for it, direct and indirect; and we know that it has been rising
steadily for some decades. We also have good reason to suspect that, acting as a
‘greenhouse gas', CO2 will effectively trap more heat from the sun and produce a
variety of changes in the processes that determine our climate. So we turn to the
scientists for numerical answers to two big questions:
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Is there a 'safe limit' of CO2 concentration, below which there will not be serious
effects of climate change?

How much do we need to reduce CO2 emissions now in order to keep below that
safe limit in the future?

There seems nothing wrong with such questions; those responsible for our
health and safety calculate thousands of such 'safe limit' numbers every year. They
are used to set standards and provide guidelines for the relevant inspectorates. But
this 'safe limit' is different. It deals with a very complex system, the global climate.
And it also deals with the future, representing conditions that are significantly
different from those we can now measure and analyse. Computer models are used
to simulate the interactions of the atmosphere with the biosphere and ‘technosphere’
of human activity. But the data is sparse and uneven in quality, the models are
drastically simplified, calibration is complicated and indirect, and the extrapolations
to the future decades ahead are quite insecure. Depending on the assumptions fed
into the models, calculated consequences can vary between 'nothing serious' and
'disaster’. Some scenarios may be more likely than others; but none can be excluded.

In the absence of reliable information on the safe limit for CO2, the argument
over policy effectively becomes one of ‘error-costs’. Those who worry about climate
change concentrate on the worst case, and also the irreversible effects. The 'skeptics'
concentrate on the costs to the economy of reductions in fossil fuel consumption, and
stress the uncertainties in the CO2 calculations. When policy recommendations are
made, they tend to ignore the numbers and instead to convey their message by
means of the cautions and caveats that qualify their advice.

After all the effort and resources that have gone into climate change science,
mainly through the expensive computer simulations of the global climate systems,
the numbers that they produce tend to be quietly pushed into the background when
the real debate begins. But the numbers are not irrelevant. If their uncertainties and
guality were properly understood, then they could be useful inputs. Suppose that it
turns out that their uncertainty bounds are so very broad, and their quality in
relation to the decisions is so low, that they are of little use as a basis for decisions.
Well, then we learn something very important indeed: the depth of our ignorance.
This could be one of the most important lessons that science can give us at the
present time: to learn of our ignorance of what we are doing to the world around
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us. But so long as we believe that somewhere, somehow there is a magic number to
be found which will define our problem and also its solution, we are fumbling in the
dark. This is what we imbibe in traditional scientific education, and it is a lesson
that needs to be unlearned without delay.

3. Uncertainty in numbers: when arithmetic crashes.

Of course, it is not so trivially simple. Scientists don't expect to dig out a
single number like a nugget of fact from their experiments. When students do
experiments in the lab they learn about the scattering of their data. If the student
produces a report that has all the data points fitting exactly onto a trend line, the
teacher will suspect that the data came from his calculator rather than from his
equipment. But this sort of uncertainty is easily tamed. 'Error bars' can be
calculated by simple arithmetical techniques; and then the final result can be
expressed to the appropriate number of 'significant digits'. We call that sort of
uncertainty 'technical’, for it is managed by routine techniques. The success of those
techniques in their proper realm gives the false impression, to the public and to
many scientists alike, that all uncertainties can be tamed in the same way.

The public already has a critical awareness about one sort of numerical
expressions. There is a well known saying about 'lies, damned lies and statistics'.
Or as the Americans put it, figures can't lie, but liars can figure. The classic little
handbook, How to Lie with Statistics (by Darrell Huff, Penguin Books, 1973+) gives a
wealth of examples of how apparently objective statistics can be rigged. The
techniques range over choice of sample, of question, and of representation, verbal
and graphic. All this is now familiar fare. By contrast, we are still naive about the
numbers themselves. Arithmetic is taught to young children, and so (we think) it
must be elementary and simple. As a result we lack the realisation that there is a
problem in the use of numbers; and if we don't know there is a problem we won't be
thinking about a solution. Yet the problem is real, and has become acute in areas
where there are great uncertainties, and where the quality of numerical data and
expressions is up for question.

We might think of numbers and arithmetic as a very simple sort of computer.
After all, computers are (in principle) just machines for doing lots of arithmetical
operations very quickly. In their early days they were described as 'faster than
thought' and 'unerring’. There was no theory of how computers could go wrong.
But as they have come into universal used, we have learned that in spite of all their
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speed and great 'artificial intelligence’, they can crash. How does a crash happen?
It's when the instructions for the arithmetic can't be followed; instead of smoothly
zipping along adding its 0's and 1's, the calculating 'brain’ either goes into a closed
loop or just jams. Could ordinary arithmetic crash too? We will see that it can, and
does. Its rules can send misleading signals, and lead to confusion or error. When
we see how even the simplest of arithmetical operations can ‘crash’ in its own way,
we are ready to imagine the reasons why all numerical expressions, particularly in
environmental issues, must be subjected to critical scrutiny.

To start with developing our critical awareness of numbers, in respect of their
uncertainty and quality, there's no better way than a paradox. That shakes our
complacency, and makes us think again about what we had always taken for
granted. So we will tell a little joke, showing how our arithmetic can ‘crash’ when it
is extended beyond calculation of sets of things, to the estimation of uncertain
guantities.

The joke runs like this. A group of schoolchildren were visiting a Natural
History museum, and an attendant was showing them a set of fossil bones. He told
them that the fossils were 63,999,997 years old. Someone asked how he knew that,
and he replied that when he started the job, he was told that the fossils were sixty-
four million years old. But then he had heard that the age had been slightly
overestimated; and so he had knocked off three years. To show his point, he did the
sum on his clipboard:

64,000,000
-3
63,999,997.

This seemed bizarre. Where did all those 9's come from? Where there had
previously been an easy string of zeros denoting the 'million’, they had all suddenly
flipped over and become quite precise 9's! Someone said, "That's ridiculous. Just a
few years off sixty-four million doesn't make any difference; it's still sixty-four
million". Annoyed, the attendant did another sum:

64,000,000

-3
64,000,000.
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Then he showed his clipboard with the two sums to the class teacher. He
challenged her to say which sum is correct. Is it the first one, that is arithmetically
true but is practical nonsense; or is it the second one, realistic in practice but
arithmetically wrong? If a pupil wrote down the second sum in answer to the
guestion 'sixty-four million take away three', would the teacher give it a failing
mark?

A great debate ensued. One student argued that when you say 'sixty-four
million' you are counting in that sort of unit, of millions. Then smaller quantities are
meaningless and the zeros for the smaller places are just there as a sort of filler.
Another agreed, but asked how we know when a zero is a counter, or when it is a
filler. Grabbing the clipboard, he wrote down a series of sums:

640
-3

637

6400
-3
6397

64,000
-3
63,097

640,000
-3
639,997

6,400,000
-3

Now, he asked, which of these is realistic? Which is describing a real counting, and
which is more like the fossils joke? The first one might well be real, and the last two,
with those strings of 9's in the answers, are obviously unreal; in the middle sums,
the meaning of the zero depends on the context.
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Some of the pupils became quite upset. Here was someone saying that ‘zero’
can mean two things, and that the meaning depends on the practical context. Why
had noone had ever told them about this before! The teacher was also distressed.
As far as she knew, arithmetic was a very simple subject, taught to the youngest
children. Of course, there are odd things about ‘'zero', since you can't divide by it.
But the idea that a digit, even zero, could be ambiguous in its meaning, was
something new and unpleasant for her. It was as if her training in elementary
mathematics had not prepared her, or her pupils, for the real world.

The fossils joke shows that numbers are used in a variety of ways, and that
their meaning can depend on the context. When we are counting, the zero is really
unambiguous. But when we are estimating uncertain quantities, it all depends. The
six 'filler' zeros in the number for the age of the fossil are a way of saying that we are
talking in millions, not in single years or in thousands of years. They are a means of
expressing the degree of our uncertainty, or indeed our ignorance, about the precise
guantity in question. But as we have seen, their meaning depends on conventions
which are not merely unspoken, but which are generally unknown! In such
conditions of uncertainty, the arithmetic we have learned in connection with simple
counting and calculating is liable to crash.

While we are about it, we might ask about the 'sixty-four million" itself. The
museum attendant interpreted a 'slight’ difference in age as just three years; that
would correspond to his scale of estimating time. But perhaps 'slight' meant 'a
million’, which is less than 2% of the sixty-four. And if the scientists are already
calculating in estimates of millions of years, is there any certainty that 'sixty-four' is
significantly different from 'sixty-three’ or 'sixty-five'? Numbers have their own
personalities: sixty-four is really telling us something about that last digit; if we said
sixty-five, that might mean ‘about halfway between sixty and seventy’, about the
right degree of precision. Perhaps the sixty-four really means 'nearly halfway
between sixty and seventy'. And the apparently precise number is simply a code for
a somewhat vague estimate.

The use of apparently hard numbers to express quite soft estimates happens
all the time. A very familiar case is when precise numerical marks are given as
guality assessments, which are usually based on subjective and contested judgments
by the examiners. Now institutions are assigned places in ‘league tables’, with their
associated rewards and punishments, which are defined by small differences
between these precise numbers. We might think that the numbers that appear in
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scientific publications are very different from those produced by examiners, but that
too depends on the context. In the old-fashioned physical sciences, they may well be
more objective and 'hard'; but in the newer environmental sciences, where we are
coping with uncertainty and ignorance, our numbers, reflecting our disagreements
and judgments, are frequently quite soft. We need an arithmetic that reflects this
new reality of policy and science, one that does not crash in the face of the new
challenges and new sorts of decisions.

4. Describing uncertainty and quality in numbers.

'‘Quality" is one of the great growth industries of our time. Ever since the
1980's, when the Japanese suddenly swept the world market in automobiles by
producing better cars at lower prices, we have been aware that 'quality’ cannot be
taken for granted. Consumers scrutinise products for information about their
guality, and all sorts of institutions in the public and private sectors go through
regular assessments of their quality. This effort has brought into being a vast array
of organisations, public and private, which test for quality and instruct others on
how to achieve it. Only one aspect of our lives is so far untouched by this general
anxiety: numbers, or quantitative information in general. Itis as if numbers are still
accepted as nuggets of truth, simple and pure.

Perhaps this is one of the few surviving articles of faith in a generally post-
modern age. We cannot predict how this particular lack of concern for quality
would affect our society; it is not as if we eat numbers or use them to get from here
to there. But since the quality of our decision-making, particularly on risks and the
environment, is affected by our lack of awareness of quality in the scientific inputs,
then we can be sure that sooner or later the harm will be real.

Changing this situation for the better will involve both a raising of awareness
and also the provision of tools whereby the quality of scientific information can be
assessed and then assured. Here will work on the latter task, hoping that it will also
assist in the former. Our contribution is a notational scheme in which uncertainty
and quality can be expressed in a concise and easily understood fashion. (For a full
description, see Uncertainty and Quality in Science for Policy, by Silvio Funtowicz and
myself; Kluwer, 1990). We call it 'NUSAP', the acronym being formed from the
letters of the five categories of the scheme.
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There is no problem in understanding the ‘front end’ of the notation, where
the focus is more on uncertainty. The first three categories are Numeral, Unit and
Spread. These correspond to the conventions in scientific writing. Thus if we have a
measurement expressed as '30 km/hr +.4', that is an instance of the first three
categories in a common notation. For Numeral we have the ordinary numbers, for
Unit we have kilometres per hour, and for Spread we have the 'error bar' +.4. There
is just one refinement that we should mention; the Unit category can (as in this case)
be split in two, which we call the 'standard' and the 'multiplier’. This expresses the
property of all measurements, of being referred back to a primary standard. In the
case of length, it is a meter; and in the logical structure of the Systeme International,
all other units of length are derived from it.

At this 'hard’ end of the numerical expression, the principal use of the
NUSAP scheme is to remind us of the flexibility we have in forming particular
'notations’. Thus the quantity in our example of Numeral might be expressed in
many ways, including the 'scientific’ notation 3E1. Or it might not be a number at
all, but perhaps an ordinal (1st, 2nd,...). Awareness of the special character of Unit
can help to clarify our thinking. The paradoxes of the 'fossils joke' can be partly
resolved if we express the estimate of age as: 64 : Million-years . The multiplier
'‘Million' on the Standard 'year' makes it plain that we are estimating in millions of
years, not in single years. Then we immediately see that the Spread announced by
the museum attendant, giving 64 : Million-years : £3 years is really quite
meaningless. One might just as well have 64 : Million-years : +3 milliseconds.

So far so good; now we consider the ways in which uncertainty merges into
guality. We can start with the sorts of error that students encounter in lab
experiments. We have already mentioned the 'scatter’ which affects all data; this is
conveyed by error-bars or our category of Spread. But there are other sources of
error, most noticeably that of calibration. For a good example, we might imagine a
sharpshooter aiming at a target. His shots might all cluster tightly around a
particular spot, but if his gun sights are badly aligned that spot might be far from
the bullseye! In this case, we can say that the sharpshooter achieved a really high
precision, but unfortunately had a low accuracy. Experimental scientists have a
convenient notation for expressing the accuracy, just adding another + term. So we
might see something like 30 km/hr £.4 £.6. This seems paradoxical, to have the
inaccuracy greater than the imprecision! But if the scientists know from history that
there is something still to be sorted out with their experiments, then that extra =
term is a prudent reminder of that deeper uncertainty.
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Such a state of affairs is not uncommon; there is a classic case of a basic
physical constant, the 'fine-structure constant’, one of the ‘dimensionless' numbers
that define the structure of our physical universe.

[ Figure 1 Here ]

In the graph of the successive values of the quantity we see it going up and down
between 1950 and 1968. We notice that the quantities are ‘'recommended values',
arrived at by committes of experts, who would reconcile all the different values
produced by different teams of experimenters. We see how the various values are
expressed numerically with high precision, roughly one part in a million; but that
the error bars extend over several parts per million at least. (The vertical scale on
the left is used to indicate the magnitudes of the error bars). Worse, as we go from
the earlier to the later recommended values, we see that more often than not the
difference between successive values is greater than the Spread of any one of them.
It is as if the scientists were constantly being surprised by the discovery of new sorts
of error, which were producing inaccuracies that quite swamped the Spread of their
previous estimates.

How would we use NUSAP to describe this basic physical constant, if we
came at the end of that eighteen-year history of its bouncing through trial and error?
Given that the deviation among the recommended values over that time was about
twenty units (not counting the earliest value), then the last digit, representing a
single part per million, is not meaningful. Our Numeral could then be 137.037 (to
the nearest hundred-thousand), the Unit might be denoted ! to emphasise its
dimensionless nature, and the Spread, composited from those on the graph, about 10
parts per million or one per hundred-thousand. And for the Assessment, it would
only be prudent to say 1 at least, especially since the last value was less than the
previous one by nearly 3 parts per hundred-thousand. In NUSAP, the estimated
value for that whole historical development could then be: 137.037 : I : £1 : +2. Even
now the differences between estimates have not dwindled into insignificance; one
Internet source quotes 137.03602855 £1 (the reciprocal of .007297351 +6), very close to
the 1968 value but more precise by four (!) places; while another more cautiously
gives 137.03597 £2.

The sort of uncertainty conveyed by Assessment is not to be calculated
routinely; the judgement depends on the experience of those with craftsmen's
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knowledge of their materials and tools. The category of Assessment need not be
restricted to 'accuracy’ as in the above example; it might be used to describe the
reliability or 'strength’ of scientific information in relation to its use in policy
decisions. We might think of it as expressing a sort of 'safety factor’, capable of
giving a warning that too much of a load of argument is being placed on a single
piece of evidence.

5. Numbers with Pedigree

Because the Assessment category is based on a judgment, there is no simple
arithmetical routine that will produce a value for it. But it is possible to provide
guidance for that judgment, and that is the function of the last category of the
NUSAP scheme, Pedigree. With this category, we are definitely at the 'soft’ end of
the scheme, with a method for making informed judgments about quality. It might
seem odd to imagine numbers having a pedigree, as if they were race horses or
show dogs. But every number comes out of a process, partly technical with the
materials and equipment, and partly social with the standards and conventions that
guide the work. If we can characterise that process, then we are in a better position
to define the limits of what it can accomplish. This can be of great assistance when
we are trying to assess the strength of scientific information in relation to its place in
a calculation or argument.

We might with that we had numbers that are precise to six digits and that
have not changed in years of experiment or testing. But if we don't have them and
can't have them in time for the decision, we must make do with what we have.
There is no point in complaining that imprecise information on environmental
parameters is ‘inferior’; if it is the best we have, then it's the best, but we want to
know how strong it is for our purposes. We might think of this judgment on the
analogy of the classification of hotels. A five-star hotel will have more facilities than
a two-star bed-and-breakfast; it is therefore in a higher class. But its quality may be
affected by its context. If | am on a limited budget, its price may put it out of my
reach, its luxuries are wasted on me, and | seek for the best that is available under
the circumstances.

There is another dimension of quality, which it is important to realise cannot
be expressed in the Pedigree method. Suppose that a particular luxury hotel is not
all that it seems, and because of poor management its sanitary condition is below
standard. Assessing this is a special task for the inspectors, who have a special
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competence; it will certainly not be revealed in the brochure! With the Pedigree
method, we ascertain the 'best possible' quality within each class, in relation to the
mode of production of the information and its intended uses. Digging deeper into a
single item of infromation, amounts to a undertaking a refereeing operation, and
that is not the business of this method.

For any class of problems and methods, there will be an appropriate form of
pedigree. In each case, the pedigree is designed through a collaboration between
experts in this sort of analysis and those who have a deep familiarity with the field.
The task is to map the critical distinctions whereby judgments of quality are made.
There is no 'correct’ Pedigree; to make a useful Pedigree is a delicate design exercise.
Returning to our first example, the modelling of global climate change, we show
how the Pedigree can assist in the assessment of the scientific studies. The Pedigree
method was applied, along with several other techniques, in a quality-assessment
study of an important global climate model by a team led by Dr. J. van der Sluijs of
the University of Utrecht, Netherlands. Full details of this research and on NUSAP
itself can be found on the website http.www.nusap.net.

The usual form of the Pedigree is a matrix, or rectangular array. The columns
represent the different aspects of the assessment. The cells in each column give the
particular criteria, usually ranked in strength downwards from the top. Each row
has a number, here running from 0 to 4, enabling a rough calculation to be made for
the purposes of completing the Assessment.

Table 1 Pedigree matrix to assess parameter strength of climate models
Score Proxy Empirical Theoretical Method Validation
understanding
4An exact Controlled Well established Best available  |Compared with
measure of the |experiments and theory practice in well jindependent
desired quantity [|arge sample established measurements of
direct discipline the same
measurements variable over
long domain
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Good fit or

measure

Historical/field
data uncontrolled
experiments

small sample

Accepted theory
with partial
nature (in view of

the phenomenon

Reliable method
common within
est. discipline

Best available

Compared with
independent
measurements of

closely related

direct it describes) practice in variable over
measurements immature shorter period
discipline
Well correlated |Modelled/derived |Accepted theory Acceptable Measurements
but not data Indirect with partial method but not independent
measuring the  |measurements |nature and limited proxy variable
same thing limited consensus on limited domain
consensus on reliability
reliability
Weak correlation |[Educated Preliminary Preliminary Weak and very
but guesses indirect theory methods indirect validation
commonalities in @pprox. rule of unknown
measure thumb estimate reliability
Not correlated  |Crude Crude No discernible  No validation
and not clearly speculation speculation rigour performed

related

An explanation of the elements is given in Appendix 1.

The Pedigree analysis has a number of applications. For potential users of the
information, it provides a convenient account of the inherent strengths and
weaknesses of the item of information. An evaluation that had previously been
conducted among the experts and shared informally among them, inaccessible to
outsiders, can now be public knowledge. This is an important contribution to the
new policies of ‘transparency and openness' which are to apply to decision-making
on risks and the environment. Stakeholders from other areas of work will have a
tool for analysis and constructive criticism; and this sort of empowerment will do a
lot for making the new participatory processes effective and real.

But the Pedigree should not be seen only in terms of opening up secret
knowledge for public scrutiny, a sort of bringing of a public gaze to the washing of
scientists’ dirty linen. Scientists themselves find it immensely beneficial. Quality
control is not a regular, formalised activity among scientists in many fields. Aside
from informal discussions among close colleagues, quality control is applied only
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prior to research, in peer review of applications, and after it, in refereeing of papers
for journals. And in science unlike in most other areas, there is no structure of
guality assurance, whereby the controllers are controlled. A notation like NUSAP,
and the Pedigee analysis, will not by themselves accomplish the development of
systems of regular quality control and quality assurance. But they provide the
elements of the conceptual tools for the job. We can imagine that in every field there
could be committees of scientists, assisted by NUSAP experts, designing and then
applying the relevant Pedigrees. This has already started in the Netherlands, and
can easily be extended elsewhere when the awareness and the will are there.

6. Conclusion.

This essay does not pretend to be an explanation of the NUSAP system;
rather, it is an invitation to imagine the problem to which NUSAP offers a solution.
Our whole scientific culture, over several centuries, has been built on the
asssumption that science can provide assured knowledge, and that it is expressed in
a precise numerical form. While that is still largely true on problems of science's
own choosing, on problems of risks and the environment it can be a damaging
illusion. | wanted to show that even on matters where scientific certainty seems
unassailable, as in elementary arithmetic and fundamental physics, calculations can
crash and constants can bounce. What then of the vast complex systems like the
global environment?

On the great issues, like global warming, its effects and our responses, there
will simply not be a scientific demonstration telling us what will happen and what
we should do. Rather, there will necessarily be a dialogue among stakeholders and
citizens. Science will provide essential inputs, but these will need to be assessed for
their uncertainty and quality. NUSAP is a means of providing the tools whereby
this can be done.
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Appendix 1.

Proxy

Sometimes it is not possible to make a direct representation of the thing we are
interested in by a numerical parameter, so some form of proxy measure is used.
'Proxy" refers to how good or close a measure of the quantity that we model is to the
actual quantity we represent. Think of first order approximations, over-
simplifications, idealisations, gaps in aggregation levels, differences in definitions,
non representativeness, and incompleteness issues. If the parameter were an exact
measure of the quantity, it would score four on proxy. If the parameter in the model
is not clearly related to the phenomenon it represents, the score would be zero.

Empirical basis

The empirical basis typically refers to the degree to which the estimation of the
parameter is based on direct observations, measurements and statistics. When the
parameter is based upon good quality observational data, the pedigree score will be
high. Sometimes directly observed data are not available and the parameter is
estimated based on partial measurements or calculated from other quantities.
Parameters determined by such indirect methods have a weaker empirical basis and
will generally score lower than those based on direct observations.

Theoretical understanding

The parameter will have some basis in theoretical understanding of the
phenomenon it represents. If our theoretical understanding of some mechanism is
very high, we may well be able to make reliable estimates for the parameters that
represent that mechanism, even if the empirical basis is weak. On the other hand a
strong empirical basis may not be sufficient to estimate future values of parameters
if our theoretical understanding of the mechanisms involved is absent. In that case,
extrapolation from past data is not warranted. This criterion aims to measure the
depth of the theoretical understanding that was used to generate the numeral of that
parameter. Parameters based on well-established theory will score high on this
metric, while parameters whose theoretical basis has the status of speculation will
score low.

Methodological rigour
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Some methods will be used to collect, check, and revise the data used for making
parameter estimates. Methodological quality refers to the norms for methodological
rigour in this process that are applied by peers in the relevant disciplines. Well-
established and respected methods for measuring and processing the data would
score high on this metric, while untested or unreliable methods would tend to score
lower.

Validation

This metric refers to the degree to which one has been able to cross-check the data
and assumptions used to produce the numeral of the parameter against independent
sources. Since climate models cannot be tested in the ordinary way, their
'validation' must be indirect. We can assess the degree to which the assumptions
used to produce the numerical parameter have been cross-checked against
independent sources. In many cases, independent data for the same parameter over
the same time period are not available and other data sets must be used for
validation. This may require a compromise in the length or overlap of the data sets,
or may require use of a related, but different, proxy variable for indirect validation,
or perhaps use of data that has been aggregated on different scales. The more
indirect or incomplete the validation, the lower it will score on this metric.
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Figure 1. Successive ‘recommended values’ of the fine-structure constant
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